High CO$_2$ permeability polymer-based membrane materials can address large-scale separations such as CO$_2$ removal from flue gas and natural gas purification [1]. We have explored several approaches to designing membranes having both high gas permeability and high permselectivity. Two approaches are as follows:

The alignment of filler materials creates fast and selective gas transport channels to improve membrane performance. The vertical alignment of highly CO$_2$-permeable covalently-anchored Montmorillonite (MT) clay fillers is achieved by interspersing the filler with polymer. The resulting mixed matrix membrane is anchored to a supporting substrate, creating a membrane with transport channels that are selective for carbon dioxide [2]. The selective top mixed-matrix layer is only ~100 nm thick. Hydroxyl groups on the inter-layered walls have a strong affinity and reversibly interact with acidic CO$_2$ molecules, facilitating CO$_2$ transport, while restraining the adsorption of N$_2$, CH$_4$ and H$_2$ gases. A high CO$_2$ permeance is achieved combined with high mixed CO$_2$/gas selectivity for several gas pairs that is stable over a period of 600 h and is independent of water content in the feed gas.

Microporous polymers are recently being explored for high gas permeability membranes. Intrinsic microporosity is defined as a continuous network of interconnected intermolecular microcavities, which is formed as a consequence of the contorted shape and chain rigidity of the polymer structure. The restricted chain rotation originating from sites of contortion or spiro centers leads to an inefficiently packed matrix with high fractional free volume (FFV), typically above 20%. ‘Polymers of Intrinsic Microporosity’ (PIMs) are microporous solvent-soluble polymers considered as promising materials for membrane-based separations because of high product throughput or flux. Highlights of some of the speaker’s and several other researchers’ work on PIMs will be given, particularly on more recent work on a related class of microporous polyimides.

Michael D. Guiver obtained his BSc (London University) and MSc (Carleton University) in Chemistry, and his PhD in Polymer Chemistry from Carleton University in 1988. He has been an Editor for the Journal of Membrane Science since 2009. He served on the Editorial Advisory Board for Macromolecules and ACS Macro Letters, American Chemical Society, from 2013-2015. He is also on the International Advisory Board of Macromolecular Research and on the Editorial Board of Polymers. He is a Fellow of the Royal Society of Chemistry, and is a member of the International Advisory Board of the Barrer Centre, Imperial College, UK. He has published over 210 SCI articles and 11 book chapters and holds about 25 patents and patent applications in the area of polymeric membrane materials. From 1987-2014, he was a scientist at the National Research Council Canada. In 2009-2013, he joined the Department of Energy Engineering at Hanyang University, Seoul, Korea as a WCU distinguished visiting professor, under the "World Class University" program, and now continues as a BK21-Plus visiting professor. In September 2014, he was appointed as a National 1000-Plan Foreign Experts professor at the State Key Laboratory of Engines, Tianjin University, China. His ongoing research interests are in membrane materials, specifically polymer electrolyte membranes for fuel cell and battery applications and the development of specialized microporous polymers for gas separations.